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The operating efficiency of a wind-driven plant based on a confuser-diffuser accelerator is evaluated within
the framework of the multiblock approach to solution of steady-state Reynolds equations closed with the use
of a two-parameter dissipative turbulence model.

The concept of improving the efficiency of wind-driven plants due to the preacceleration of the air flow in
front of the impeller with the use of specially profiled channels has actively been discussed in recent years. Turbulent
air flow inside a specially profiled channel of a wind-driven plant has been modeled numerically to evaluate the ac-
ceptability of the concept. It is common knowledge that physical experiments involving measurement of the parameters
of flow on the impeller and in the vicinity of it require considerable financial expenditures, and it is not always pos-
sible, especially at almost inaccessible places. Therefore, in solving the problem, one employs multiblock computa-
tional technologies allowing correct representation of different-scale elements of the flow in the plant [1]. A simplified
mathematical model taking account of the action of forces on the impeller is proposed for correct description of the
process of motion of the flow on the impeller of a wind-driven plant.

The mathematical model of turbulent, axisymmetric, low-velocity air flow about the multielement configura-
tion of a wind-driven plant (Fig. 1a) is based on a system of complete steady-state Reynolds equations for an incom-
pressible viscous fluid which are closed with the use of a high-Reynolds version of a two-parameter dissipative
turbulence model. The standard Launder–Spalding model employed in combination with the wall-function method is
modified within the framework of the Rodi–Leschziner concept so as to take account of the influence of the curvature
of streamlines on the characteristics of turbulence [2]. Such an approach is tested in calculations of separated flow
about bodies of different geometry, including the cases of the presence of a mobile shield, on monoblock structurized
grids [3, 4].

The implicit factorized procedure for solution (by the finite-volume method) of the initial equations written in
generalized form for increments in dependent variables in curvilinear nonorthogonal coordinates is based on the con-
cept of splitting by physical processes [3, 5]. The SIMPLEC method is used for interpretation of the interrelation of
the velocity and pressure fields; on centered grids, this method is supplemented with the Rhee–Chou approach with a
selected empirical relaxation coefficient of 0.1. The original features of the algorithm proposed include the approxima-
tion of convective terms on the implicit side according to the upwind scheme with one-sided differences and the in-
troduction of scheme diffusion in it for smoothing nonphysical oscillations of the solutions in the case of large Rey-
nolds numbers. By the traditional method characteristic of methodological support of the majority of universal applica-
tion packages (of the Fluent and Star CD type), one discretizes convective terms on the explicit side of the momentum
equations with the use of the upwind scheme with quadratic interpolation (Leonard’s one-dimensional scheme). A vari-
ant of the TVD scheme is employed for representation of convective terms in the equations for the characteristics of
turbulence. The algebraic equations are solved by the method of incomplete matrix factorization.

The multiblock strategy of solution of the initial equations on intersecting structurized grids with their partial
overlapping has been developed systematically from the mid-1990s primarily as applied to the aeromechanics of bodies
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with vortex cells [1]. It was successfully tested in solving internal and external problems of hydrodynamics with flow
separation [6–12] and those of vortex heat exchange in the case of flow about the reliefs of holes [13–21]. Therefore,
it seems expedient to employ it for solution of the problem in question.

The configuration of an axisymmetric object, presented in Fig. 1, consists of a number of curvilinear elements.
The distance from the axis of symmetry to the external shell of the last nozzle is equal to 5 m, while the length of
the system of nozzles from the initial edge to the final edge is equal to 15 m.

Modeling of the turbulent flow about the multielement object is carried out on a set of multiblock grids
shown in Fig. 1b. The computational region is covered with a Cartesian rectangular grid with a nonuniform step inside
which there are different-scale curvilinear nonorthogonal grids. A more detailed arrangement of the block with six cur-
vilinear grids is given in Fig. 1c. As is seen, the multiblock approach enables one to describe the geometry of the in-
itial bodies in the best manner and to take account of the special properties of separated turbulent flow. A very fine
curvilinear grid adapted to the mathematical interpretation of a windwheel is employed for modeling of the flow of the
impeller.

For calculation we employ a simplified mathematical model of the impeller which enables us to transfer the
basic physical conditions of flow in bladings to the "numerical experiment." In so doing, we consider a wind-driven
plant with the flow going axially out of the impeller. Such conditions can be realized in the wind-driven plant consist-
ing of the nozzle apparatus and the impeller. In the model in question, both bladings are geometrically represented by
a fairly narrow disk whose thickness is one row of the cells of the narrow grid. In this work, the basic parameter
characterizing the action of the impeller on the flow is the dimensionless quantity ψ:

ψ = ∆ρ∗  ⁄ 




ρV∞
2

2




  ,

where ρV∞
2 /2 is the velocity head in an undisturbed flow.

The value of the specific work ψ is taken to be constant over the span of the impeller vane. This is consis-
tent with the law (widely used in axial turbomachines) of profiling of bladings for circulation constant over the radius.
The efficiency of the windwheel is also considered to be constant over the radius. We can show that in this case the
distribution of the axial velocities in passage from the inlet to the outlet of the turbine is preserved and the radial po-
sition of the stream jet is not changed. In carrying out variant calculations, we assume that a windwheel realizing the

Fig. 1. Configuration of a wind-driven plant (a) with an accelerator (K is the
turbine wheel) and multiblock computational grids in the computational region
(b) and in the vicinity of the wind-driven plant (c). Dashed curve, axis of sym-
metry.

1247



prescribed constant value of ψ for the axial-velocity distribution obtained for this variant is installed in each case in
the extension of the wind-driven plant.

From consideration of the Reynolds equations (see, for example, [5]) it becomes clear that the parameter men-
tioned can be modeled as the external force F acting on the volume element of the gas. From this proposition, we can
easily calculate the projections of F onto the coordinate axes.

Numerical modeling of axisymmetric gas flow without allowance for the swirl of the flow in the windwheel
with negligibly small Mach numbers is carried out for Re = 3.123⋅106. The transverse linear dimension from the ex-
ternal edge of the nozzle to the axis of symmetry L = 5 m was selected as the characteristic linear dimension, and the
velocity of the incoming flow V∞ = 10 m/sec was taken as the characteristic velocity.

To ensure the fulfillment of the exact physical conditions of flow in the wind-driven plant we carry out test
calculations with the aim of determining the rational position of the upper boundary of the computational region so as
to eliminate the possible influence of the boundary conditions on calculation results. The absence of the influence of
the dimensions of the computational region on the flow rate in the cross section of the windwheel bladings is selected
as the condition of sufficiency of these dimensions. As is clear from Fig. 2a, the value of the flow rate is independent
of the distance to the upper boundary beginning from a value of the distance equal to ten characteristic linear dimen-
sions (10L). Therefore, the width of the computational region is selected to be 18 characteristic linear dimensions
(18L).

Fig. 2. Dimensionless value of the flow rate vs. distance to the upper bound-
ary (a), dimensionless flow rate (curve 1) and coefficient λ (curve 2) vs. spe-
cific work ψ (b) and the patterns of flow about the wind-driven plant (c, d, e)
and the fields of constant values of the axial velocity component (f, g, h) for
three values of ψ: 0 (c, f), 0.6 (d, g), and 0.8 (e, h).
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Numerical modeling of flow inside the channel of the wind-driven plant is carried out for different values of
the specific work ψ removed from the flow; the range of these values varies from 0 to 0.9. Figure 2 shows some of
the results obtained on the diagnostics of the flow in the wind-driven plant.

In the absence of a turbine (ψ = 0), we observe a significant growth in the dimensionless value of the hori-
zontal velocity component u in the vicinity of the turbine (to a value of 1.6). As the values of the specific work ψ
removed from the flow increase, the pattern of flow inside the turbine channel begins to rapidly change. The value of
the horizontal velocity component in the vicinity of the turbine rapidly drops. Thus, for ψ = 0.6 the dimensionless
value of u in the vicinity of the turbine is less than unity. This fact indicates a rapid decrease in the rate of flow
through the turbine cross section and hence a drop in the value of the power removed.

Further growth in ψ results in the occurrence and development of separation zones directly in the channel in
front of the tube, which indicates insufficient operation of the wind-driven plant. As follows from Fig. 2e, a large re-
circulation zone keeping the air from moving is formed directly in the channel in front of the turbine. When ψ = 0.9,
the regime of choking of the flow through the wind-driven plant is realized.

Figure 2b shows the dependence of the dimensionless flow rate of air and the dimensionless power removed
from the wind turbine λ = Q

__
ψ on the specific work ψ for an aerodynamic efficiency of the turbine of η = 1. The

quantity λ is equal to half the factor of utilization of the wind energy adopted in wind-power engineering and repre-
sents the ratio of the capacity of the wind turbine N to the available power (rate) of the flow λ = N/(ρV∞

3 πL2). We
can see that the wind-driven plant considered has a maximum value of λ = 0.03. For the dimensional parameters em-
ployed in this work this corresponds to a capacity of 2.87 kW. With allowance for the fact that the aerodynamic ef-
ficiency of the turbine cannot be higher than 0.9–0.92 the shaft power will not exceed 2.6 kW, i.e., the wind-driven
plant considered multiply ranks below the axial analogs without extensions in this parameter.

It should be noted that the rate of flow through the turbine of the wind-driven plant in question must be
nearly an order of magnitude higher to attain an energy efficiency at least comparable to the efficiency of axial-type
wind-driven plants without extensions.

This work was carried out with support from the Russian Foundation for Basic Research under project Nos.
02-02-81035 and 02-01-01160.

NOTATION

ρ and V∞, density and velocity of the incoming flow; L, characteristic dimension; ∆p∗ , difference of the total
pressure on the turbine; ψ, dimensionless value of the specific work removed from the flow; λ, ratio of the capacity
of the wind turbine to the available rate of the flow; Re, Reynolds number; F, external force acting on the volume
element of the gas; η, aerodynamic efficiency of the turbine; Q and Q

__
, flow rate and its dimensionless value; H, dis-

tance to the upper boundary of the computational region.
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